Identifying Optimization Opportunities within Kernel Execution in GPU Architectures

نویسنده

  • Robert Lim
چکیده

Tuning codes for GPGPU architectures is challenging because few performance tools can pinpoint the exact causes of execution bottlenecks. While profiling applications can reveal execution behavior with a particular architecture, the abundance of collected information can also overwhelm the user. Moreover, performance counters provide cumulative values but does not attribute events to code regions, which makes identifying performance hot spots difficult. This research focuses on characterizing the behavior of GPU application kernels and its performance at the node level by providing a visualization and metrics display that indicates the behavior of the application with respect to the underlying architecture. We demonstrate the effectiveness of our techniques with LAMMPS and LULESH application case studies on a variety of GPU architectures. By sampling instruction mixes for kernel execution runs, we reveal a variety of intrinsic program characteristics relating to computation, memory and control flow.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Challenges for a GPU-Accelerated Dynamic Programming Approach for Join-Order Optimization

Relational database management systems apply query optimization in order to determine efficient execution plans for declarative queries. Since the execution time of equivalent query execution plans can differ by several orders of magnitude based on the used join order, join-order optimization is one of the most important problems within query processing. Since the time-budget of query optimizat...

متن کامل

An approach to Improve Particle Swarm Optimization Algorithm Using CUDA

The time consumption in solving computationally heavy problems has always been a concern for computer programmers. Due to simplicity of its implementation, the PSO (Particle Swarm Optimization) is a suitable meta-heuristic algorithm for solving computationally heavy problems. However, despite the simplicity, the algorithm is inefficient for solving real computationally heavy problems but the pr...

متن کامل

The Architecture and Evolution of CPU-GPU Systems for General Purpose Computing

GPU computing has emerged in recent years as a viable execution platform for throughput oriented applications or regions of code. GPUs started out as independent units for program execution but there are clear trends towards tight-knit CPU-GPU integration. In this work, we will examine existing research directions and future opportunities for chip integrated CPU-GPU systems. We first seek to un...

متن کامل

GPU-Based Speculative Query Processing for Database Operations

With an increasing amount of data and user demands for fast query processing, the optimization of database operations continues to be a challenging task. A common optimization method is to leverage parallel hardware architectures. With the introduction of general-purpose GPU computing, massively parallel hardware has become available within commodity hardware. To efficiently exploit this techno...

متن کامل

AutoMatch: Automated Matching of Compute Kernels to Heterogeneous HPC Architectures

HPC systems contain a wide variety of heterogeneous computing resources, ranging from general-purpose CPUs to specialized accelerators. Porting sequential applications to such systems for achieving high performance requires significant software and hardware expertise as well as extensive manual analysis of both the target architectures and applications to decide the best performing architecture...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015